Analyzing and Reporting for Clinical Research

What you need to know in 60 minutes or less

Victor Valcour MD
Professor of Medicine
Memory and Aging Center

Working with acquired data

Benefits

- Data do not need to be captured = time savings
- Efficiency not all studies require acquisition of new data

Limitations

- No control over acquisition of data
 - Instruments used to capture the data
 - Population studied
- Must be considerate of extensive work needed to capture the data (co-authorship, acknowledgement)

Major Roadblocks/ common errors

- Not understanding the context in which data were acquired
 - Population, cohort phenomenon, etc.
- Ensure ethical approvals for the analyses done/investigators

Major Roadblocks/ common errors

- Not scrutinizing hypotheses based on available data
 - Reconsider the most appropriate questions to meet your needs that can be understood with the data
- Poor external validity
 - Instruments used may not be most appropriate for clinical settings and may not translate to this setting

Step 1 – Understanding the data

- Where do the data come from?
 - Study title, investigators, funding agencies
 - What were the primary aims that led to data acquisition?
 - How were subjects recruited?
 - Who was left out of the final analysis?

Step 2 – Understanding the problem

- What is known about the question you are interested in?
- Has a similar study been conducted if so, what did they find
- If not, has a similar study been conducted in a different disease/population? What can be learned about it?
- Consider the broader disease what is known?

Step 2 – Understanding the problem

- Literature review
 - Using PubMed to understand the literature
 - Focused reviews
 - Use of a librarian to help develop a formal review
 - Reporting the information
 - Annotated bibliography
 - Using Endnote/shared documents within the lab
 - Formatting for journals
 - Review of journal specific requirements getting citation template from the internet

Step 3 – Defining how the information was acquired

- What is the timeline under which the data were acquired?
- What other variables were acquired at the same time? Consider those important as predictors, outcomes, and covariates
- Are there other factors that will influence the study?

Step 4 - Hypotheses

- State your primary and secondary hypotheses
- Critical need to state these before you begin analyses
 - Risk for false discoveries; risk for multiple comparisons
- Make the hypotheses as specific as possible

Step 4 - Hypotheses

- Translate these hypotheses into precisely how they will be managed in the statistical analysis
 - Which variable will be used to define the major predictors, outcomes, and covariates
- Is your analysis feasible? what is the likelihood that you will have meaningful power to answer this question?

Step 5 – Define your statistical methodology

• List:

- What program will you use/version #?
- How will you compare groups to be studied?
 - Consider distribution of the variables for parametric vs. non-parametric approaches
- How will you test your main hypothesis?
- Be specific include covariates; clearly state what is primary and what is exploratory

Step 6 – Describe accrual and timeline

- Define when and how the subjects were recruited
- Define inclusion and exclusion criteria
- Define drop-outs and excluded cases that impact your data

<u>Key</u>: Understand and write something that would allow another person to reproduce your study based on the description you give

Step 7 – Demographics and clinical variables

- Compared groups to be studied
 - What variables are critical to compare: age, education, CD4, treatment, etc.
 - Do the two groups differ?
 - Prepare a table (Table 1 of most papers)
 - Keep in mind the distribution of the data

(p-values are easy to get – but, are the model assumptions met?)

Step 8 - Complete and present your major analyses

- Use graphs and tables liberally
- Do not limit yourself to those figures that will be used in presentation – in descriptive areas, be open minded.

Step 8 - Complete and present your major analyses

- Visually demonstrate what you found and summarize it in succinct sentences
- Use appropriate error estimates in graphs so that individuals can easily see the certainty in the data
- Use appropriate range for x and y axis (don't artificially make your data look better than they are

Step 9 – Summarize your major findings

- Use 2-3 paragraphs to state:
 - What you found
 - Why it is important
 - What gaps (limitations) are there in your analysis
 - Where this research can take us mechanistically
 - What are the next steps?

Step 10 – Present your data to an audience

Conferences

- What is the best venue/audience?
- What is feasible?
- Be sure to know your audience
- When a small crowd, acknowledge accomplishments of the crowd
- Be humble!
- Be comfortable saying "I don't know" but don't say it too quickly.

Step 10 – Present your data to an audience

- Publication
 - What journal publishes similar work?
 - What audience do you want to target?
 - Where will the work have the greatest impact?
 - Other considerations:
 - What is the impact factor of the journal?
 - Is the journal referenced on PubMed?

Good Luck