MAPPING ABNORMAL SUBCORTICAL BRAIN MORPHOMETRY IN AN ELDERLY HIV+ COHORT

Benjamin Wade ${ }^{1}$, Victor Valcour ${ }^{2}$, Lauren Wendelken-Riegelhaupt ${ }^{2}$, Pardis Esmaeili-Firidouni ${ }^{2}$, Shantanu H. Joshi' ${ }^{3}$, Yalin Wang ${ }^{4}$, Paul M. Thompson ${ }^{1}$
${ }^{1}$ Imaging Genetics Center, USC ${ }^{2}$ Memory and Aging Center, UCSF ${ }^{3}$ Ahmanson-Lovelace Brain Mapping Center, UCLA 4Shool of Computing, Informatics, and Decision Systems Engineering, ASU
Questions
. Are there discemible aboormalities in the subcortical morphometry of elderly people with HIV?

Can the use of surface-based shape descriptors enhance classification of HIV+ brains beyond the use of volumetric measures?

Introduction

Over 50% of HIV+ individuals show significant neurocognitive impairments.
Basal ganglia, ventricular and white matter abnormalities are commonly reported in HIV+ cohorts.

The extent of impairment is associated with subcortical structural atrophy.
The profile of HIV-associated brain abnormalities remains poorly understood.
Development of sensitive biomarkers for HIV-related atrophy would aid clinicians in determining which HIV patients will develop cognitive deficits.

Methods

Subjects

63 elderly HIV+ subjects: 65.35 years old, 4 women
31 uninfected controls: 64.68 years old, 2 women

Morphometric descriptors

Results
 Olumns Iustrate raw t-values from the main effect's coefficient.second and fouth coluch

Classification performance by descriptor

Conclusions

Using volumetric and shape-based descriptors we were able to characterize abnormal subcortical morphometry in HIV.

Correctly predicted that more extreme clinical measures were associated with more extreme subcortical atrophy.
Observed unexpected enlargement of pallidi in relationto certain clinical measures
Volumetric and shape descriptors uniquely characterized separate aspects of the HIV+ phenotype.

Classification was improved by shape descriptors in some cases.

References

if. L. Cysique, et al., "Prevalence and pattern of neuropsychological impairment in human immunodeficiency
 [2] Y. Wang, et al., Applysing tensor-based morphometry to parametric surfaces can improve MRI-based 2.]. Wang, et al., ", "pplying tensor-based morphometry to parametric surfaces can improve MRI-based
disease diagnosis, "Neurolmage, vol. 74, pp. 209-230, 2013. [3] L. G. Apostolova, et al., 3D comparis

